We found that MDPV blocks uptake of [H-3]dopamine
(IC50=4.1 nM) and [H-3]norepinephrine (IC50=26 nM) with high potency but has weak effects on uptake of [H-3]serotonin (IC50=3349 nM). In contrast to other psychoactive cathinones (eg, mephedrone), MDPV is not a transporter substrate. The clearance of endogenous PRN1371 dopamine is inhibited by MDPV and cocaine in a similar manner, but MDPV displays greater potency and efficacy. Consistent with in vitro findings, MDPV (0.1-0.3 mg/kg, intravenous) increases extracellular concentrations of dopamine in the nucleus accumbens. Additionally, MDPV (0.1-3.0 mg/kg, subcutaneous) is at least 10 times more potent than cocaine at producing locomotor activation, tachycardia, and hypertension in rats. Our data show that MDPV is a monoamine transporter blocker with increased potency and selectivity for catecholamines when compared with cocaine. The robust stimulation of dopamine transmission by MDPV predicts
serious potential for abuse and may provide a mechanism to explain the adverse effects observed in humans taking high doses of ‘bath salts’ preparations. Neuropsychopharmacology (2013) 38, 552-562; doi:10.1038/npp.2012.204; published online 17 October 2012″
“Herpesvirus nucleocapsids are translocated from their assembly site in the nucleus to the cytosol by acquisition of a primary envelope at the inner nuclear membrane which subsequently fuses with the outer nuclear membrane. This transport through the nuclear envelope requires SBI-0206965 cell line homologs of the conserved herpesviral pUL31 and pUL34 proteins which form the nuclear egress complex (NEC). In its absence, 1,000-fold less virus progeny is produced. We isolated a UL34-negative mutant of the alphaherpesvirus pseudorabies virus (PrV), PrV-Delta UL34Pass, which regained replication competence after serial passages in cell culture by inducing nuclear envelope breakdown (NEBD) (B. G. Klupp, H. Granzow, and T. C. Mettenleiter, J. Virol. 85:8285-8292, 2011). To test whether this phenotype
is unique, passaging experiments were repeated with a UL31 deletion mutant. After 60 passages, the resulting PrV-Delta UL31Pass replicated PDK4 similarly to wild-type PrV. Ultrastructural analyses confirmed escape from the nucleus via NEBD, indicating an inherent genetic disposition in herpesviruses. To identify the mutated viral genes responsible for this phenotype, the genome of PrV-Delta UL34Pass was sequenced and compared to the genomes of parental PrV-Ka and PrV-Delta UL34. Targeted sequencing of PrV-Delta UL31Pass disclosed congruent mutations comprising genes encoding tegument proteins (pUL49, pUL46, pUL21, pUS2), envelope proteins (gI, pUS9), and protease pUL26. To investigate involvement of cellular pathways, different inhibitors of cellular kinases were tested.