These biological processes are thought to play important roles in

These biological processes are thought to play important roles in the pathogenesis of HCC [2]. To better understand the biological functions of HHBV-HHCC, we determined the enrichment of specific pathways for all interactors. Of the 76 proteins (HHBV-HHCC), 63 (~83%) could be mapped

to 9 pathways (P < 0.01) of 202 KEGG human pathway database (Additional file 1, Table S8). 6 pathways, namely apoptosis, cell cycle, p53 signaling pathway, toll-like receptor signaling pathway, MAPK signaling pathway and ErbB signaling pathway were significantly enriched (P < 0.0001). Functional analysis of the HBV-human interaction network Dysregulation of 10058-F4 solubility dmso the balance of survival or apoptosis represents a protumorigenic principle in human hepatocarcinogenesis [20]. To PF-01367338 provide a review of the current findings about how the balance is dysregulated by HBV in HCC, we integrated 57 HHBV-HHCC into one molecular interaction network. As shown in Figure 3, these HHBV-HHCC can constitute several signal pathways, such as JAK/STAT, MEK/ERK, PI3K/AKT, NFκB, MAPK, SAPK/JNK, and p53 signal pathways, and mediate many opposing cellular functions, including function

in cell cycle and apoptosis regulation [21]. Figure 3 Functional analysis of the HBV-human interaction network. In black, HHBV-HHCC either down-regulated or inactivated; in red, HHBV-HHCC either up-regulated IKBKE or overactivated; with underline, HHBV-HHCC interact (activate

or inhibit unknown); in box, non-HHBV-HHCC molecules in pathways. See text for details. The expression of cytokines like IL2, IL6, TNF and receptors like insulin-like growth factor 1 receptor (IGF1R) are up-regulated, which can activate kinases like the Src tyrosine kinases and the downstream pathway such as MAPK, MEK/ERK. HBx activates the components of the JAK/STAT, MEK/ERK, PI3K/AKT, MAPK, SAPK/JNK signalling pathways, leading to activation of a variety of transcription factors such as STAT-3, ELK-1, NF-κB, CREB, β-catenin, c-Fos, c-Jun, c-Myc, etc. Meanwhile, some physiological proapoptotic molecules are down-regulated or inactivated, such as Fas, p53, DR5 or FADD. HBx can bind to the C-terminus of p53 sequesters in the cytoplasm and prevent it from entering the nucleus [2], failure to up-regulate genes, such as IGFBP3, p21WAF1, Bax or Fas, thereby inactivating several selleck products critical p53 dependent activities, including p53 mediated apoptosis. Moreover, the down-regulation of PTEN and the activation of PI3K/AKT-Bad pathway can inhibit TGFβ and FasL induced apoptosis and down-regulation of caspase 3 activity. However, HBx also promotes the apoptosis by regulating the expressions of Fas/FasL, Bax/Bcl-2, and c-Myc gene.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>