Thiosulfate does not stimulate growth. The major cellular fatty acids upon culturing GSK1838705A supplier on plates of Marine Agar 2216 under fully aerobic conditions are C16:1ω7c,
C16:0, C18:1ω7c, and C14:0. The DNA G + C content of the type strain is 56.7 mol% (determined from the genome sequence). The type strain is Ivo14T (= NOR5-1BT = DSM 22749T = JCM 17770T). It was isolated from the top oxic layer of a muddy littoral sediment close to the island of Sylt (North Sea, Germany). Description of Pseudohaliea gen. nov Pseudohaliea (Pseu.do.ha’lie.a. Gr. adj. pseudês, false; N.L. fem. n. Haliea, a bacterial genus name; N.L. fem. n. Pseudohaliea, false Haliea) Cells are Gram-negative, non-spore-forming and multiply by binary fission. Mesophilic and moderately halophilic. Strictly aerobic, respiratory and heterotrophic metabolism. Cyanophycin is not selleck chemical produced as storage material. Tests for
oxidase and catalase GNS-1480 mw activity are positive. Cytochromes of the c-type are dominating in redox difference spectra. BChl a and carotenoids of the spirilloxanthin series are produced in variable amounts depending on the incubation conditions. Does not produce urease, arginine dihydrolase or tryptophanase. Nitrate is not reduced to nitrite. Major cellular fatty acids are C16:0, C16:1 and C18:1. The dominating hydroxy fatty acids are C12:0 2OH and C12:1 3OH. Phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid are the major polar
lipids. Ubiquinone 8 is the dominating respiratory lipoquinone. Representatives are mainly found in seawater. The type species is Pseudohaliea rubra. Description of Pseudohaliea rubra comb. nov Pseudohaliea rubra (ru’bra. L. fem. adj. rubra, red). Basonym: Haliea rubra Urios et al. 2009 The description of the species is based on the information provided in [18] and this study. Cells are non-motile straight rods which have the tendency to form coccoid or pleomorphic shapes. The dimensions of cells grown in SYPHC medium varies between 1.2 and 1.6 μm in length and 0.6 μm in width. Intracellular storage compounds are polyphosphate and glycogen. Cells have a tendency to form aggregates in liquid Farnesyltransferase medium. Colonies appear after about 10 to 14 days on plates of Marine Agar 2216 and are round, concave, smooth and dark red. The in vivo absorption of BChl a in the near-infrared region of the spectrum shows two main peaks at 804 and 821 nm and a minor peak at 871 nm, indicating the presence of a light-harvesting complex 3 along with small amounts of a light-harvesting complex 1. Optimal growth conditions are at 30°C, pH 8 and a salinity of approx. 3.5% (w/v) NaCl. The tolerated salinity for growth ranges from 0.7 – 4.2% (w/v) NaCl. The mean generation time under optimal growth conditions is 3.4 h.