Since innate immune responses in particular differ between mice and humans, these responses should be investigated more intensively after viral infection of mice with reconstituted human immune system components. Two bacterial pathogens in particular have been explored in mice with reconstituted human immune system components, namely Mycobacterium tuberculosis (Mtb) and Salmonella enterica
Typhi (S. Typhi), the etiological agents of tuberculosis and typhoid fever, respectively (TableĀ 1). Intranasal Mtb infection led to lung granuloma formation in mice with reconstituted human immune system components [79, 80]. These granulomas were quite similar to granulomas of tuberculosis patients in that they were comprised of human giant cells and macrophages in a necrotic core, surrounded Daporinad by human T cells and encapsulated by a fibrotic response. Mouse leukocytes of the NSG hosts were sparse in these granulomas and restricted to the periphery. Moreover, no granulomas were observed in nonreconstituted
mice. Apart from Mtb, i.p. or i.v. injection of S. Typhi established this infection in reconstituted, but not BRG or NSG mice without reconstitution [81-83]. Infection was documented by colony-forming units (cfu) in the spleen, liver, BM, gall bladder, and blood. Mutant S. Typhi strains were also explored in this setting, and a strain that was avirulent in human volunteers replicated to lower cfu levels, while a typhoid toxin mutant showed increased infection. Therefore, both Mtb and S. Typhi infections can be explored in ice with reconstituted human immune system components. Interestingly, while the reported S. Typhi Selleck SRT1720 immune response was only analyzed for bacteria-specific antibody responses of an undefined isotype in a subset of mice (25%) [81], the CD4+ T-cell responses to Mtb infection seemed to serve an unexpected purpose [79]. CD4+ T-cell depletion compromised Vitamin B12 granuloma formation and
this diminished bacterial load [79]. In contrast, TNF neutralization preserved granuloma formation and diminished Mtb load. These data suggest that granulomas promote Mtb replication and TNF mediates protective functions, which are independent of granuloma formation. These studies mark the beginning of investigations of antibacterial immune responses in mice with human immune system components. The limited information that has been generated thus far already leads to a better understanding of bacterial pathogenesis in humans and allows exploring mutants as vaccine candidates to elicit immune responses in this preclinical model of human immune responses. Born out of the need for new in vivo models for infection with human pathogens and the immune responses raised against them, which might be better translatable to human patients than the classical animal models, mice with reconstituted human immune system components are increasingly being explored.