By classic var types we henceforth mean the seven that are examin

By classic var types we henceforth mean the seven that are examined in this prior analysis: cys2, A-like, the H3 subset (h3sub), cysPoLV groups 1, 2, and 3, and BS1/CP6 [10]. Figure 4 Two subsets of A-like var genes differently

associated with severe disease. Prior analyses by Warimwe et al. [10] established that while A-like expression associates with one form of severe disease: impaired consciousness (IC), it does not correlate with another form of severe disease: respiratory distress (RD). Furthermore, while the rosetting phenotype (which correlates with A-like var expression) was found to associates with RD, it was not found to associate with IC. Warimwe et al. concluded find more that there must be two subsets of A-like var genes that cause severe disease by distinct means: one that causes impaired consciousness by tissue-specific sequestration, and another that causes rosetting, which can lead to respiratory distress (RD). HBs—particularly HBs 204 and 219—improve our ability to distinguish these two classes of severe spectrum var genes. In an attempt to identify this hypothesized class of var genes using HBs, we looked for a subset of A-like var genes that have expression rates significantly

correlated with rosetting, and simultaneously significantly anti-correlated with IC. Among the expression rates of classic var types, none had significant and opposite {Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|buy Anti-diabetic Compound Library|Anti-diabetic Compound Library ic50|Anti-diabetic Compound Library price|Anti-diabetic Compound Library cost|Anti-diabetic Compound Library solubility dmso|Anti-diabetic Compound Library purchase|Anti-diabetic Compound Library manufacturer|Anti-diabetic Compound Library research buy|Anti-diabetic Compound Library order|Anti-diabetic Compound Library mouse|Anti-diabetic Compound Library chemical structure|Anti-diabetic Compound Library mw|Anti-diabetic Compound Library molecular weight|Anti-diabetic Compound Library datasheet|Anti-diabetic Compound Library supplier|Anti-diabetic Compound Library in vitro|Anti-diabetic Compound Library cell line|Anti-diabetic Compound Library concentration|Anti-diabetic Compound Library nmr|Anti-diabetic Compound Library in vivo|Anti-diabetic Compound Library clinical trial|Anti-diabetic Compound Library cell assay|Anti-diabetic Compound Library screening|Anti-diabetic Compound Library high throughput|buy Antidiabetic Compound Library|Antidiabetic Compound Library ic50|Antidiabetic Compound Library price|Antidiabetic Compound Library cost|Antidiabetic Compound Library solubility dmso|Antidiabetic Compound Library purchase|Antidiabetic Compound Library manufacturer|Antidiabetic Compound Library research buy|Antidiabetic Compound Library order|Antidiabetic Compound Library chemical structure|Antidiabetic Compound Library datasheet|Antidiabetic Compound Library supplier|Antidiabetic Compound Library in vitro|Antidiabetic Compound Library cell line|Antidiabetic Compound Library concentration|Antidiabetic Compound Library clinical trial|Antidiabetic Compound Library cell assay|Antidiabetic Compound Library screening|Antidiabetic Compound Library high throughput|Anti-diabetic Compound high throughput screening| associations with rosetting and IC. Among the HB expression rates we tested, there were many with significant associations BIX 1294 clinical trial with rosetting (data not shown, but see Additional file 1: Figure S9 ) and/or IC (Additional file 1: Figure S8), but only one had significant associations with these phenotypes in opposite directions: The expression rate of HB 204 is significantly anti-correlated with rosetting (p = 0.025) and significantly correlated

with IC (p = 0.0069) in models using HB 204 and host age as the only independent variables (Additional file 1: Figure S8). Next we addressed whether many any HBs can provide additional information about rosetting, beyond what is already captured by classic var tag typing methods. We added each HB expression rate as an additional independent variable, one at a time, into a model of rosetting that already contained eight other independent variables: host age and the expression rates for the classic var types. We then compared model statistics (primarily BIC, but also AIC, R2 and adjusted R2) to determine the benefit of the particular HB expression rate to the model (Additional file 3: Table S1). While most HBs increase the BIC, decrease the adjusted R2 and provide an insignificant contribution to predicting rosetting (p>> 0.05), two HBs make improvements to the model and have significant p-values even within these over-parameterized models. HB 204 substantially reduces the BIC (from 50.72 down to 48.62), and substantially increases the adjusted R2 (from 0.348 up to 0.376).

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>