With the increase of SILAR cycles, the thickness of the PbS nanoparticles increased correspondingly. For the sample coated with 5 SILAR cycles, the space between the TiO2 nanorods was filled with PbS nanoparticles, and a porous PbS nanoparticle layer was formed on the surface of the TiO2 nanorods. As discussed later, this porous PbS layer can cause a dramatic decrease in photocurrent and efficiency for the solar cells. Figure 1 Typical FESEM images of the bare TiO 2 nanorod array and PbS-TiO 2 nanostructures. (a) FESEM image (40° tilted) of the bare TiO2 nanorod array grown on FTO glass by hydrothermal method. (b) FESEM images
of PbS-TiO2 nanostructures after 1, (c) 3, and (d) 5 SILAR cycles. Figure 2 shows the cross-sectional SEM images of PbS(3)/CdS(0)-TiO2 and PbS(3)/CdS(10)-TiO2 nanostructures. Compared with Figure 2a, a uniform Cell Cycle inhibitor find more protective layer of CdS was successfully deposited on the top of PbS nanoparticles. As we will discuss later, after the CdS coating, a remarkable enhancement of the cell performance and the photochemical stabilization of PbS sensitizer was observed. XRD patterns of the bare TiO2 nanorod array, the PbS(3)/CdS(0)-TiO2 nanostructure, and PbS(0)/CdS(10)-TiO2 nanostructure were shown in Figure 3. As shown in Figure 3a, besides the diffraction peaks from cassiterite on structured SnO2, all the other peaks could be indexed as the (101), (211), (002),
(310), and (112) planes of tetragonal rutile structure TiO2 (JCPDS no.02-0494). The formation of rutile TiO2 nanorod arrays could be attributed to the small lattice
mismatch between FTO and rutile TiO2[25]. Both rutile and SnO2 have near identical lattice parameters with a = 0.4594, c = 0.2958, and a = 0.4737, c = 0.3185 nm for TiO2 and SnO2, respectively, making the epitaxial growth of rutile TiO2 on FTO film possible. On the other hand, anatase and brookite have lattice parameters of a = 0.3784, c Thymidine kinase = 0.9514 and a = 0.5455, c = 0.5142 nm, respectively. The production of these phases is unfavorable due to a very high activation energy barrier which cannot be overcome at the low temperatures used in this hydrothermal reaction. As noted in Figure 3b,c, the as-synthesized CdS-TiO2 nanostructure exhibited weak diffraction peaks of CdS at 2θ = 26.5°, 43.9°, 54.6°, and 70.1°, corresponding to the (111), (220), (222), and (331) planes of cubic CdS with the lattice constant a = 0.583 nm (JCPDS no. 89–0440). The diffraction peaks of as-synthesized PbS-TiO2 nanostructure could be indexed as (111), (200), (220), (222), (400), (331), (420), and (422) planes, correspondingly, of cubic PbS with the lattice constant a = 0.593 nm (JCPDS no. 78–1901). Figure 2 Cross-sectional SEM images of PbS-TiO 2 nanostructures without (a) and with (b) CdS capping layer. Figure 3 XRD patterns of bare TiO 2 nanorod array (a), CdS-TiO 2 nanostructure (b), and PbS-TiO 2 nanostructure (c).