Increased levels of microbial substances may, at least in part, c

Increased levels of microbial substances may, at least in part, contribute

to the ‘farm effect’. However, only few studies have measured microbial exposures in these environments and the results obtained so far suggest PLX3397 mw that the underlying protective microbial exposure(s) have not been identified, but a number of studies using metagenomic approaches are currently under way. The mechanisms by which such environmental exposures confer protection from respiratory allergies are also not well understood. There is good evidence for the involvement of innate immune responses, but translation into protective mechanisms for asthma and allergies is lacking. Furthermore, a number of gene × environment interactions have been observed. In recent years, the ‘hygiene hypothesis’ has received much attention [1]. This field of allergy research investigates the potential link between exposure to microbial sources and the development of allergic and autoimmune diseases. At least three distinct claims on the underlying nature of the hygiene hypothesis

have been brought forward. First, the potential role of overt and unapparent infections with viruses and bacteria has been discussed; secondly, the AZD2281 in vivo relevance of non-invasive microbial exposures in the environment has been shown to influence the development of allergic and also autoimmune diseases; and thirdly, the influence of such exposures and infections on a subject’s innate and adaptive immune response is being discussed. Before addressing these various aspects CYTH4 of the hygiene hypothesis,

one must consider the complex nature of the problem. In clinical practice allergic illnesses may appear somewhat uniform because most patients present with a limited variety of symptoms, yet the underlying mechanisms and causes are likely to be numerous. Asthma and allergies are complex diseases determined by genetic variation interacting with environmental exposures. There is increasing evidence that it is not one single gene that causes, for example, asthma, but that many genes with small effects contribute to new-onset asthma. Moreover, several environmental determinants have been identified for different allergic illnesses which interact with an exposed subject’s genetic background. Furthermore, when considering the various environmental exposures and potential underlying mechanisms, one must bear in mind that the effect of an exposure has been shown to depend upon the timing. At least during infancy, childhood and adolescence the human organism is in a constant stage of development and maturation. These predefined processes display windows of accessibility and vulnerability to intrinsic and extrinsic influences only at certain stages of development. Most studies suggest that for asthma and allergies, early life, i.e.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>